BITFURY

Exonum

Exonum: Byzantine fault tolerant protocol for
blockchains

Yury Yanovich, Ivan Ivashchenko, Alex Ostrovsky, Aleksandr Shevchenko,
Aleksei Sidorov

Abstract

The need for consensus in distributed systems is an active area of research.
There are many mathematical models with known theoretical limitations, as
well as many correct and fast protocols. This research paper posits that the
competitive blockchain industry requires foremost that consensus algorithms
be fast regarding processed transactions per second. The new blockchain-
specific consensus algorithm named Exonum is proposed in the paper. Its
theoretical properties are proved and performance tests are provided.

Keywords: consensus, Byzantine fault tolerance, blockchain, peer-to-peer,
performance evaluation

1. Introduction

A fundamental problem in distributed computing is achieving system re-
liability in the presence of faulty processes — to get consensus [1, 2]. The
consensus problem requires agreement among a number of processes for a
single data value, for example, a new bit value. The correct consensus clas-
sically means that three conditions hold for every execution of the algorithm

e termination: eventually each correct process sets its decision variable
e agreement: the decision value of all correct processes is the same

e integrity: if the correct processes all propose the same value, then any
correct process in the decided state has chosen that value.

There are popular models for faulty processes [3, 4]

e fail-stop: process stops and cannot resume

Preprint submitted to Computers € Security December 27, 2018

BITFURY

Exonum 2

e omission: process cannot send some messages, and it can delete some
received messages without reading or even information about such re-
ceived messages

e qauthorized Byzantine failures stand for failures in which absolutely no
conditions are imposed, but all the messages supposed to be crypto-
graphically authenticated by author processes

e Byzantine failures stand for failures in which absolutely no conditions
are imposed.

For more examples and practical aspects of failures see [5].

The possibility of a consensus algorithm with specified properties depends
on processes and their communication (message delivery) assumptions. The
most common message delivery models are [3]

e asynchronous system: any message can be delivered at any time after
sending, or fail to be delivered at all

e partially synchronous system: some unknown time 7" exists, such that
each message is delivered faster than 7T'.

e synchronous system: each message is delivered faster than a known
finite latency T

The processes also can be distinguished into three categories: asynchronous,
partially synchronous or synchronous based on their relative computation
speed.

The key results about Byzantine fault tolerant consensus are

e impossibility of distributed consensus with one faulty process (FLP
impossibility) [6]: the correct consensus in the asynchronous system is
impossible if a least one Byzantine process is presented

e the Byzantine fault tolerant (BFT) consensus algorithm exists in par-
tially synchronous and synchronous systems if and only if the total
number of processes NN is greater than or equal to 3f + 1, where f is a
number of faulty processes [3, 1, 2]. The number of BFT protocols are
developed [7, 8, 9, 10].

BITFURY

Exonum 3

The blockchain technology [11] introduced new challenges and needs of
the consensus problem solution. Originally, the economic Proof-of-Work [12,
13] solution was used in Bitcoin and other cryptocurrencies, which paradigm
is one-CPU-one-vote. Such an approach is very energy consuming [14], has
monopolization risks due to hardware and energy production limitations and
guarantees only eventual consistency [15], which is not bad for permissionless
blockchains and is a reasonable price for availability regarding CAP-theorem
[16, 17, 18]. There are several Proof-of-X alternatives to overcome Proof-of-
Work drawbacks for cryptocurrencies: stake [19, 20], activity [21], publication
[22], storage [23, 24]. Cryptocurrencies are the most popular but not the only
application of the blockchain technology [25, 26, 27, 28, 29, 30] and can be
not only fully public [31, 18]. If they have a limited (or even known) list
of entities having write access, then the Byzantine fault tolerant consensus
algorithms can be a good solution for them [32].

In case of blockchain, the processes have to get an agreement for a new
block of transactions. This introduces specific limitations [31, 33, 34]

e high performance regarding transactions per second (TPS)

e censorship resistance which can be formulated as chain quality
e common prefir which is specific for economic consensus

e chain growth property for fraction of blocks by honest authors.

There is a number of blockchain specific BET protocols [35, 36] for par-
tially synchronous systems and papers with nondeterministic [37] and specific
asynchronous [38, 39, 40] models.

2. Assumptions

We propose a consensus algorithm for a blockchain network. We refer
to processes as validators because there are also read-access-only processes —
auditors — in blockchains. Each validator is either written to the genesis block
or chosen through the consensus. The consensus is about the next block (at a
known height H) to commit it to the blockchain. Blocks contain transactions
— indivisible and irreducible series of database operations such that either all
or none occur. Transactions either contain business operations (for example,
tokens transfer in case of cryptocurrency) or change blockchain design (for
example, validators list or anchoring frequency [41, 18]). Validators receive

BITFURY

Exonum 4

transactions from external clients to add them to the blockchain and exchange
them through requests algorithm. The transactions which are included in the
blockchain are called committed transactions.

Each validator has a set of transactions that have not been committed.
This set is called a pool of unconfirmed transactions. In general, the pools
of unconfirmed transactions are different for different validators. Hereafter
we refer to validators and auditors as nodes. If necessary, the validators can
request unknown transactions from other nodes.

Assumption 1. The validators (processes) are partially synchronous and
the network is partially synchronous.

Under Assumption 1 we can assume that messages are processed instantly.

Let 6t be an unknown upper bound for message delivery time.

Assumption 2. Each validator has infinite memory.

This assumption is a simplification to avoid dealing with DoS with con-
sensus messages by Byzantine validators.

At each height H the consensus contains several rounds starting with 1.
Rounds start according to some schedule, but stops only when consensus
about a block at height H is achieved. If the validator is in round R, then
he can process all the messages from round R and previous rounds.

Each validator uses its own timer for time estimation, and they do not
send it or compare with each other. Each time the validator comes to a
new height, its timer resets to zero. The time between round beginnings
is positive and known by design. It grows to infinity with round number
growth, for example, round R starts in R? — 1 seconds.

There is a commonly available validators enumeration at each height,
which starts with 1 and finishes with N, where NN is the number of validators
at current height. Let f be the number of Byzantine processes. Let a+ be
the abbreviation for “more than a”, where a € (0,1). And let a— be the
abbreviation for “less than a”, where a € (0,1).

Assumption 3. N > 3f + 1. Other words, the fraction of Byzantine
validators is 1/3—.

The set of validators and their order could be different for different
heights. For example, the enumeration can be according to the lexicograph-
ical order of their public keys. There is a leader in each round, which is
defined by the leader election algorithm (see Subsection 4.3) and could be
calculated from the blockchain data. The leader proposes a new block for the
current hight. The block contains the limited number of transactions from
the set of unconfirmed ones. The size and number of transactions per block

BITFURY

Exonum 5

is limited to limit the block size.
Let (H, R) be the validator position, which means that the round R at
height H has started for it, but the round R + 1 has not yet.

3. Algorithm Overview

The consensus algorithm overview is proposed in this Section.

3.1. Consensus Messages and Their Fields

The consensus algorithm uses the following types of messages

Propose, Prevote and Precommit messages that correspond to three
phases of the consensus algorithm

Request messages used by full nodes to request missing data from peers

Block messages used to transmit an entire block of transactions to a
lagging full node

Auxiliary messages, such as Status and Connect.
a part of their fields are described here

validator_id: index of specific validator in validators list of config-
uration. This field is common to all types of messages

height: height to which the message is related. This field is common
to all types of messages

round: round number to which the message is related. This field is
common to all types of messages

hash: hash of the message. This field is common to all types of mes-
sages

Propose.prev_hash: hash of the previous block

Prevote.propose_hash: hash of the Propose message to which Prevote
belongs.

See source code at https://github.com/exonum/exonum for more de-

tails.

https://github.com/exonum/exonum

BITFURY

Exonum 6

3.2.

Parameters

The algorithm has a set of global configuration parameters

propose_timeout: proposal timeout after the beginning of a new height

first_round_timeout: time before the second round starts. This in-
terval increases by 1.1 each round.

status_timeout: period of sending the ‘Status‘ message with a current
height information.

and a set of node state variables

3.3.

current_height: current blockchain height

queued: queue of consensus messages (Propose,Prevote, Precommit)
from the future height or round

Proposes: a set of known block proposals

locked_round: round in which the node has locked on a proposal
current_round: number of the current round

locked_propose: Propose on which the node is locked
Proof-of-Lock: a set of messages to prove the lock (see 3.3)
state_hash: hash of the blockchain state

transactions_pool: aset of transactions that have not yet been added
to the blockchain. This set is called a pool of unconfirmed transactions.
In general, the pools of unconfirmed transactions are different for dif-
ferent nodes.

Proof-of-Lock

A set of 2/3+ Prevote messages for the same propose from the nodes
at the current round and blockchain height is called Proof-of-Lock (PoL).
Nodes store PoLL as a part of node state. A node can have no more than one
stored PoL.. We say that PoL is greater than the recorded one (has a higher
priority), in cases when

BITFURY

Exonum 7

1. there is no PoL recorded

2. the recorded PoL corresponds to a proposal with a smaller round num-
ber.

So Polis are partially ordered. A node must replace the stored Pol. with a
greater Pol. if it is obtained by the node during message processing.

3.4. Message Processing

Validators use a queue for message processing. Incoming request and
consensus messages are placed in this queue when they are received. The
same queue is used for timeouts processing. Timeouts are implemented as
messages to this validator itself.

Messages from the next height (i.e., current height + 1) or future round
are placed into the separate queue (queued).

4. Algorithm Description

The algorithm description is provided in the current Section (see Fig-
ures 1 and 2). It includes the list of consensus stages, message processing
and round leader election. The requests algorithm for messages is formulated
in Appendix A.

4.1. Consensus Algorithm Stages

e Full proposal (availability of full proposal) occurs when the node gets
complete info about some proposal and all the transactions from that
proposal

o Availability of 2/3+ Prevotes occurs when the node collects 2/3+
Prevote messages from the same round for the same known proposal.

e Lock occurs when the node replaces the stored PoLs (or collects its first
PolL.)

e Commit occurs when the node collects 2/3+ Precommit messages for
the same round for the same known proposal. Corresponds to the
Commit Node State.

BITFURY

= Exonum

.—>@

Transaction
Validation

+ Not committed

Message Consistency
Check

Consensus Message
Processing

@ Message is for current height and round

@ itis for current height, but for future round

Uncommitted
° Transaction
L=

Pool Q

-

Validator & Signature
Check

+ Message author is validator

v Message signature is consistent

Unknown
E5) Transaction (2’

List

() Each known Propose
has its own list

@

Status
Processing

Message is for future height

Consensus
Message
Queue

Message is for current
height and round

@ List became empty N

@ Listis not empty

+ Propose is unknown

Propose
Processing

' Previous hash is consistent
+ Propose author is leader
v No commited transactions
@ Unknown transaction(s)

@ Al transactions are known

-

Full
- Q Propose
@ No saved Proof of Lock >2/3 Prevote
Existence

@

+ Prevotes round is greater

’ ’ than Proof of Lock round

+ Prevotes correspond
1o known Propose

@ >2/3 Precommit exist
@ >2/3 Prevote exist

X

@

@ Propose is unknown
>2/3 Prevote exist

Prevote
Processing

Propose is known

All transactions are known

Round

._j') @ Lock

() Proof of Lock saving

v Round is in [locked, current]

@ Prevote has not been sent

@ Prevotes that correspond to
this lock are the most recent

@

¢

1

Precommit
Processing

Propose is unknown

>2/3 matching Precommits
Propose is known

All transactions are known

Message round is greater
than locked round

Unknown Prevote(s)

o—

Figure 1: Exonum consensus algorithm schema

BITFURY

Exonum 9

4.2. Receiving an Incoming Message

At the very beginning, the message is checked against the serialization
format.

If any problems during deserialization are detected, such a message is
ignored as something that the node cannot correctly interpret. If verifica-
tion is successful, proceeds to consensus messages processing or transaction
processing.

4.2.1. Consensus Messages Processing
e Do not process the message if it belongs to a future round or height.
In this case, if the message refers to the height current height + 1, it
is added to the queued queue. If the message is related to the future
height and updates the knowledge of the node, this information is saved
according to the requests algorithm.

e If the message refers to a past height, it should be ignored.

e If the message refers to the current height and any round not higher
than the current one, then the node

— checks that the validator_id specified in the message is less than
the total number of validators

— check the message signature against the public key of the validator
with index validator_id index

o [f verification is successful, proceed to the message processing according
to its type.

4.2.2. Propose Message Processing
Arguments: Propose.

e If Propose is known (its hash is already in the Proposes HashMap),
ignore the message.

e Check Propose.prev_hash correctness.
e Check that the specified validator is the leader for the given round.

e Check that the proposal does not contain any previously committed
transactions (Propose message contains only hashes of transactions, so
the absence of hashes in the table of committed transactions is checked).

BITFURY

Exonum 10

e Add the proposal to the Proposes HashMap.

e Form a list of transactions the node does not know from the Propose.
Request transactions from this list.

e [f all transactions are known, go to the full proposal.

4.2.3. Transaction Processing
e If the transaction is already committed, ignore the message.

e [f such a transaction is already in the pool of unconfirmed transactions,
ignore the message.

e [f absent, add the transaction to the unconfirmed transaction pool.

e For all known proposals where this transaction is included, exclude
the hash of this transaction from the list of unknown transactions. If
the number of unknown transactions becomes zero, proceed to the full
proposal for the current proposal.

4.2.4. Full Proposal
Arguments: Propose.

e If the node does not have a saved PoL, send Prevote message in the
round to which the proposal belongs.

e For each round r in the interval
[max{locked round + 1, propose.round}, current_round]

— If the node has 2/3+ Prevotes for Propose in r, then proceed to
“Availability of 2/3+ Prevotes” for the Propose in r.

e For each round r in the interval [propose.round, current_round|

— If 2/34 Precommits r available for the Propose in r and with the
same state_hash, then the node

x Executes the proposal, if it has not yet been executed.

x Checks that the resulting state_hash of the node coincides
with the state hash of the majority (if not, the node must
stop working and signalize error).

* Proceeds to COMMIT for this block.

BITFURY

Exonum 11

4.2.5. Availability of 2/3+ Prevotes
e Cancel all requests for Prevotes that share ‘round‘ and the
propose_hash fields with the collected Prevotes.

e If the locked round of the node is less than Prevote.round and the
hash of the locked Propose message corresponding to this Prevote is
the same as the Prevote.propose_hash, then proceed to Lock for this
very proposal.

4.2.6. Prevote Message Processing
Arguments: Prevote.

e Add Prevote to the list of known Prevote messages for its proposal in
the Prevote.round round

e If the node has formed 2/3+ Prevote messages for the same round and
propose_hash
— locked_round < prevote.round
— the node knows Propose corresponding to this Prevote
— the node knows all of its transactions

e Then proceed to availability of 2/3+ Prevotes for
Propose in the Prevote.round round

e [f the node does not know propose or any transactions, request them.

4.2.7. Precommit Message Processing
e Add the message to the list of known Precommits for the Propose in
this round with the given state_hash.

o If

— the node has formed 2/3+ Precommits for the same round and
propose_hash
— the node knows the Propose

— the node knows all of its transactions

e Then

BITFURY

Exonum 12

— Execute the proposal, if it has not yet been executed.

— Check that the nodes state_hash coincides with the state_hash
of the majority (if not, the node must stop working and signalize
error).

— Proceed to Commit for this block.
e Flse

— Request Propose, if it is not known.

— If the message round is bigger than the locked_round, request
Prevotes from the message round.

4.2.8. Lock
e For each round r in the interval [locked_round, current_round]

— If the node has not sent Prevote in r, send it for the
locked_propose.

— If the node has formed 2/3+ Prevotes in r, then change
locked_round to current_round, locked_propose to
Propose.hash (Propose corresponds to 2/3+ Prevotes in r).

— If the node does not send Prevote for any other proposal except
locked propose in subsequent rounds after locked round, then

x Execute the proposal, if it has not yet been executed.
* Send Precommit for the locked propose in the current_round.

 If the node has 2/3+ Precommits for the same round with the
same block_hash, then proceed to Commit.

4.2.9. Commit
e Add a block to the blockchain.

e Push all the transactions from the block to the table of committed
transactions.

e Update current height.
e Set the value of the locked round variable to 0 at a new height.

e Delete all the transactions of the committed block from the pool of
unconfirmed transactions.

BITFURY

Exonum 13

e [f the node is the leader, form and send Propose and Prevote messages
after propose_timeout expiration.

e Process all messages from the queued, if they become relevant (their
round and height coincide with the current ones).

e Add a timeout for the next round of the new height.

4.2.10. Block Message Processing

Arguments: Propose.

Block messages are requested by the validators if they see that some
consensus messages belong to a future height.

e Check the block message

— The key in the to field must match the key of the node.
— Propose.prev_hash of the correspondent Propose matches the
hash of the last committed block.

o [f the message structure is correct, proceed to check the block contents.

— The block height should be equal to the current height of the node.

— The number of Precommit messages should be sufficient to reach
consensus.

— All Precommit messages must be correct.

e If the check is successful, then check all transactions for correctness
and if they are all correct, then proceed to their execution to check the
resulting block hash. If this is not the case, then a critical error has
occurred: either the majority of the network is Byzantine or the nodes’
software is corrupted.

e Add the block to the blockchain and move to a new height. Set to 0
the value of the locked round variable at the new height.

o [f there are validators who claim that they are at a bigger height, then
turn to the request of the block from the higher height.

BITFURY

Exonum 14

I l
SN SN =

a Round Timeout
58 Processing

(@) Next round timeout creation

Consensus
M
® Message
Queue

Ci

Figure 2: Round timeout processing

4.2.11. Round Timeout Processing

If the timeout does not match the current height and round, skip further
timeout processing.

Add a timeout (its length is specified by the round timeout variable
and a corresponding function) for the next round.

Process all messages from the queued, if they become relevant (their
round and height coincide with the current ones).

If the node has a saved Pol., send Prevote for the locked _propose in
a new round, proceed to availability of 2/3+ Prevotes.

Else, if the node is the leader, form and send Propose and Prevote
messages (after the expiration of the propose_timeout, if the node has
just moved to a new height).

4.2.12. Status Timeout Processing

If the height of the node has not changed since the timeout was set,
then send out a ‘Status‘ message to all peers.

Add a timeout for the next ‘Status‘ broadcast.

BITFURY

Exonum 15

4.3. Leader Election

Recall, that f is the number of Byzantine validators, as well as there are
N > 3f + 1 validators in total. H is the current height for the blockchain.

1. Every node whose block proposal is accepted by the network (that
is, after the node becomes the author of the newly accepted block) is
moving to the locked state for F blocks. During the next a - N blocks
it does not have a right to create new block proposals, where « is a
parameter of the leader election algorithm such that a € [1/3,2/3) and
a - N is an integer. The node behaves itself as usual in other activities,
that is it votes for a new block, signs messages, etc. Remove authors
of the accepted block proposals at the previous « - N heights from the
list of candidates for leaders. The list of candidates to be elected as a
leader at each height includes M = N—a-N = (1—a)N > N-1/3 > f
validators. So there is an honest validator among candidates for each
height H. Let us re-enumerate them as 0,1,..., M — 1 according to
their base numbers.

2. Shuffle this list pseudo-randomly. Shuffling should be deterministic but
the place of each node should be uniformly distributed over the list.
To do so, we take a permutation over these M validators. The permu-
tation number is calculated as I = Hash(H) mod M!. This calculation
provides uniform distribution of the orders, so Byzantine validators are
pseudo uniformly randomly distributed inside the current H height.

5. Algorithm Properties

Theoretical properties of the proposed algorithm are formulated and proved
in this Section.

Statement 1. Round Beginning

All non-Byzantine nodes being at a height of not less than H, will be in
the state (H, R) or higher (either bigger round or bigger height), where R is
an arbitrary fixed constant.

Proof

We will prove the statement for every single non-Byzantine node. That
node shall move to a new height in a finite time (and in this case the condition
will be satisfied) or remain at the height H. In the second case, the node
increments the round counter at known finite intervals (by stopwatch). The
round counter of any non-Byzantine validator will be increased to the value

BITFURY

Exonum 16

R no more than in finite time 7" as the processes are partially synchronous
and due to the round timeout increase schedule. Thus, all non-Byzantine
validators will move to the state (H, R) or higher.

Statement 2. Non-Byzantine Leader

For each height H there exists a round in which a non-Byzantine node
will become a leader.

Proof

Property of leader election algorithm: even if a malefactor takes control
over f nodes, one will not be the author of every future block.

Statement 3. Deadlock Absence

A certain non-Byzantine node will sooner or later send some message
relating to the consensus algorithm (Propose, Prevote, Precommit).

Proof

Let us prove it by contradiction. Assume that each non-Byzantine node
sends no messages for an arbitrarily long period of time; then that node
updates neither the current height nor the PoL state (Prevote message is
sent for the new PolL upon the coming of a new round in the case of a PoLL
update, if no other message has been sent before this time). Consider the
cases of PoL status:

1. Some non-Byzantine node has a saved PoL. Then this node will send
a Prevote message for the proposal saved in the PoLL when the next
round timeout occurs (unless it sends any other message earlier).

2. No a single non-Byzantine node has a saved PoL. Then there will al-
ways come another round in which some non-Byzantine node will be
the leader (see Statement 2). In this case, the node will form a new
proposal and send Propose and Prevote messages.

Corollary

If there exists an unlimited number of heights at which the validator
can become a leader (property of leader election algorithm), then any non-
Byzantine node will send an arbitrarily large number of messages related to
the consensus algorithm (Propose, Prevote, Precommit).

Statement 4. Obligatory Block Acceptance (Liveness)

There necessarily will come a point in the system when the non-Byzantine
node will accept a new block to commit it into the blockchain.

Proof

Suppose the network be at a certain height H; then the maximum height
of the blockchain of a non-Byzantine node is equal to H. In accordance with

BITFURY

Exonum 17

Statement 3, all non-Byzantine nodes will be able to move up to the height
H or higher. Next, the state is considered when all the non-Byzantine nodes
are at height H.

Let R(T) denote the round following the maximum round among non-
Byzantine validators, at the moment T according to the clock of an outside
observer.

Similarly, T'(R) is the time of coming of the R round according to the
clock of an outside observer for all non-Byzantine validators.

Let the non-Byzantine node be the leader for the first time in the round
with the number R < R* (where R* denotes a uniform estimate of R over
validators and R* < f+2 for our leader election algorithm). Then the coming
time of the round R* for all non-Byzantine nodes according to the outside
observer’s watch is T'(R*).

Not later than at the moment T'(R*) + §t + propose_timeout each non-
Byzantine node will receive a correct proposal from the R round. Fur-
ther, not later than through 26t, that node will know all the transactions
from this proposal (request mechanism). Denote this time T* = T(R*) +
propose_timeout + 30t.

If no non-Byzantine node has PoL to the R(T™*) round, then in this round
the node will receive PoLi (for the proposal from the R round). Indeed, if no
one has PoL, then the nodes cannot send the Prevote message in the R(T™)
round. In accordance with the algorithm for processing complete proposals,
the confirming Prevote message will be sent.

Thus, by the time 7" = T'(R(T™*)) + 6t at least one non-Byzantine node
will have PoL.

Not later than 7" = T'(R(T")) + 20t each non-Byzantine node will have
some PoL. Indeed, starting with the R(7”) round, the non-Byzantine node
will send Prevote messages for the proposal from its PoL. Non-Byzantine
nodes that do not have PoL. will be able to get this PoL. through the request
mechanism by the time 7.

None of the non-Byzantine nodes will send Prevote for new proposals
since the moment 7. Hence, new PoL will not appear in the network.

During one iteration T'(R(*)) + 20t at least one non-Byzantine validator
will increase its PoL. Indeed, all the non-Byzantine nodes already have some
PoLs. In this case, they will always send Prevote messages for the corre-
sponding proposals. And according to the logic of their processing, if the
non-Byzantine node receives Prevote pointing to a larger PoL, a request for
missing Prevote for this (bigger) PolL occurs.

BITFURY

Exonum 18

Since there exists finite number of the validators and possible proposals, it
follows that in some finite time 7", 2/3+ of all validators will receive PoL for
the same proposal. After that they will be able to send Precommit messages.

Not later than time T'(R(T")) + 6t at least one non-Byzantine validator
will accept the new block and hence some node will correctly add the block
to the blockchain.

Statement 5. Absence of Forks (Consensus Finality)

If some non-Byzantine node commits a block to the blockchain, then no
other node can add another block, confirmed with 2/3+ Precommit messages,
to the blockchain at the same height.

Proof

Suppose some node adds block B block to the blockchain. This can only
happen if that node goes into the Commit stage. There exist three possibilities
of the transition to the Commit: from Lock, prevote message processing, and
full proposal. In all these cases, the condition of the transition is the presence
of 2/34 Precommit messages for some proposal P from round R and the
result of applying the corresponding block leads to the same state_hash.
Since the number of Byzantine nodes is 1/3—, 1/3— of the non-Byzantine
nodes send Precomit messages in the corresponding round. Such a message
could only be sent within the Lock stage in which the PoL is stored for the
proposal P in the round R. This can happen only if these nodes do not
send Prevote messages in rounds R’ > R for P’ # P (special condition for
sending the Precommit message). Also, these nodes send Prevote messages
in all rounds after R until their current rounds. Thus, since the remaining
nodes are 2/3—, we have two consequences.

1. In no round after R we can get Pol. (in other words go to the Lock
stage) for the P’ # P proposal, because this requires 2/3+ Prevote
messages.

2. In all rounds of R’ > R, new PoLs cannot emerge in the network, except
for PoLs related to the proposal P (and, accordingly, to the block B).
Indeed, at the beginning of the round following the current round, the
specified 1/3+ of the non-Byzantine nodes will be in the state with the
saved PoL corresponding to the P proposal. And consequently they
will send Prevote messages only for the saved P proposal according to
the round timeout processing.

Thus, messages of the Precommit type cannot be sent for any other block

BITFURY

Exonum 19

proposal. This means that none of the non-Byzantine nodes can add another
block to the blockchain.

Corollary. Deadlock absence for asynchronous network

The property of fork absence will be preserved also in the case of an
asynchronous network.

Proof

The proof of Statement 5 does not in any way use the assumption of
partial synchronism. Therefore, it is also true in an asynchronous network.

Statement 6. Pulling Nodes Up

Any non-Byzantine node eventually will get all the blocks included in the
blockchain by any other non-Byzantine node.

Proof

Let node A fall behind for some reason from node B. And node A is at
height H, while node B is at height H + h, where h > 0. We will show that
in a finite time node A can be pulled to the height H + 1.

All messages described in the algorithm and related to the consensus al-
gorithm (Propose, Prevote, Precommit, Status) contain the current height.
Thus, as soon as node B sends any of these messages and the message is de-
livered to A, node A will understand that it is behind and will request the
next block (it can do this not from node B, but for any other node); if the
block is added, then the block will be correct due to the absence of forks. In
accordance with the corollary from Statement 3, node B always sends some
message of the consensus algorithm.

Theorem 7. Consensus Algorithm Correctness

The proposed consensus algorithm is correct for each height, i.e. it satis-
fies termination, agreement, and integrity.

Proof

Terminations follows from Statements 4 and 6. Agreement is equivalent
to Statement 5. Integrity follows from Statement 4.

Statement 8. Censorship Resistance

There are least /N — f > 0 committed blocks from honest leaders among
each aN consequent blocks.

Proof

Each validator can be a leader for a committed block once per alN >
f consequent blocks by leader election algorithm design. So for each aN
consequent blocks, there can be f or less blocks from Byzantine validators.
All other blocks are from honest validators.

BITFURY

Exonum 20

Note. Statement 7 guaranties chain quality [33] with fraction aiN <1 of
of the commitTed blocks, proposed by Byzantine nodes, which is consistent
with [34] fora~2/3 and f: N =3f+ 1.

6. Exonum Distinguishing Features

Exonum uses consensus algorithm slightly similar to PBFT [7], but it has
a number of distinctive features compared to other BFT algorithms.

6.1. Unbounded Rounds

Rounds have a fixed start time but they do not have a definite end time
(a round ends only when the next block is received). This helps decrease
delays when the network connection among validators is unstable.

Assume that consensus messages from a certain round need to be pro-
cessed within the round. If the state of the network deteriorates, the network
might not manage to accept the proposal until the end of the round. Then
in the next round the entire process of nominating a proposal and voting for
it must begin again. The timeout of the next round should be increased so
that the block could be accepted during the new round timeout with a poor
network connectivity. The need to repeat anew the work that has already
been done and an increase in the timeout will lead to additional delays in
accepting the block proposal.

In contrast to the case discussed in the previous paragraph, the absence
of a fixed round end in Exonum allows the system to accept the proposal
with a minimum necessary delay.

6.2. Work Split

Propose messages include only transactions hashes. (Transactions are
included directly into BlockResponse messages). Furthermore, transactions
execution is delayed; transactions are applied only at the moment when a
node locks on a Propose.

Delayed transactions processing reduces the negative impact of malicious
nodes on the system throughput and latency. Indeed, it splits transactions
processing among the stages of the algorithm:

At the prevote stage, validators only ensure that a list of transactions
included in the proposal is correct (the validator checks that all the trans-
actions in the Propose are already stored by this node. The correctness
of a transaction is verified when the transaction is received; nodes do not

BITFURY

Exonum 21

store incorrect transactions.) At the precommit stage, validators apply the
transactions to the current blockchain state. At the commit stage, valida-
tors ensure that they achieved the same state after applying the transactions
in the proposal. If a Byzantine validator sends out proposals with a differ-
ent transactions order to different validators, the validators do not need to
spend time checking the order and applying the transactions at the prevote
stage. A different transactions order will be detected when comparing the
propose_hash received in the Prevote messages from other validators and
the propose_hash received in the Propose message.

Thus, the split of work helps reduce the negative impact of Byzantine
nodes on the overall system performance.

6.3. Requests Algorithm

Requests algorithm (see Appendix A) allows a validator to restore any
consensus info from other validators. This has a positive effect on system
liveness.

7. Experiments

7.1. Enuvironment Design

We performed experiments with two network configurations: in a sin-
gle data center (DC) and multiple geographically distributed DCs. In both
cases, twenty-one virtual machines were used (16 validators, 4 transaction
generators, 1 benchmark control instance). Each validator was running on a
separate virtual machine with 3.75 GiB RAM, 2 Core Intel Xeon Platinum
CPUs running @3.4GHz, and the blockchain database was stored on an EBS
drive connected to each instance. Nodes used Exonum version 0.9. In case
of

e Single DC: virtual machines were in one availability zone within one
AWS region (eu-central-1).

e Multiple DCs: validators were distributed among 14 AWS DCs in
different locations: N.Virginia, Ohio, N.California, Oregon, Mumbai,
Seoul, Singapore, Sydney, Tokyo, Canada, Frankfurt, Ireland, London
and Paris. Generators were distributed in 4 different DCs in different
regions: N.Virginia, Sydney, Tokyo and Frankfurt. Benchmark control
instance was located at the Frankfurt AWS DC.

BITFURY

Exonum 22

7.2. Blockchain Design

In all experiments the following consensus parameters were used
e block capacity: 2000 transactions

e propose timeout: 0 seconds

e signature size: 64 bytes.

Two types of blockchain were considered

e timestamping: each transaction contains an author’s public key and a
hash of the file to be timestamped. Transactions have no business logic
interaction and there are no specific Merkle proof structures.

e cryptocurrency: each public key is associated with a cryptocurrency
wallet. A transaction has an input address, an output address and
amount. One needs enough tokens to send and be able to sign the
transaction. Blockchain storage contains Merkle index for each wallet.

Four generators send transactions to all validators during the experiments
with a constant flow. The flow is chosen in order to be a bit bigger than the
blockchain tps. Each validator check transaction signature before adding a
transaction into the pull of unconfirmed transaction. Given scenario can be
considered as a real-life high-load mode.

Experiments code will be available at https://github.com/exonum after
paper release.

7.8. Performance Tests

We measured transactions per second (TPS, the bigger the better) for the
different total amount of validators. The results were averaged over 100 000
transactions processed for each case. The mean value and standard deviation
were of interest. Hereafter the blue line with squares and magenta filling
represents the mean and standard deviation for the timestamping, the black
line with circles and green filling represents the same for the cryptocurrency.

Note. Almost all the blocks were filled with transactions in our experi-

ments, so one can estimate block acceptance time in seconds as 2000/TPS.

https://github.com/exonum

BITFURY

Exonum 23

tps

20 000
18 000
16 000
14 000
12 000
10 000

8000

6000 .\.\

4000

.

Validators

Figure 3: TPS as a function of validators number in a Single DC. The blue line with
squares and magenta filling represents the mean and standard deviation for the timestamp-
ing, the black line with circles and green filling represents the same for the cryptocurrency.

7.3.1. Different Validators Number

The number of consensus messages over network grows as a square of
validators number in Exonum. It decreases blockchain performance. We
considered different number of validators to estimate this effect.

TPS experimental results are in Figure 3 for a Single DC and in Figure 4
for Multiple DCs.

Exonum shows around 5000 tps in a Single DC for the cryptocurrency.
This amount is almost independent of validators number as most likely writ-
ing Merkle proofs to EBS Drive process is the most time-consuming. Exonum
shows more than 10 000 tps for the timestamping in a Single DC and this
amount slightly decreases with the validators number growth.

Exonum shows more than 4000 tps in the Multiple DC for the cryp-
tocurrency with 4 validators and more than 2000 tps for 16 validators. It
shows from 13 000 to 4 000 tps for the timestamping and this amount slightly
decreases with the validators number growth.

BITFURY

Exonum 24

tps
16 000
14 000
12 000
10 000

8000

6 000

#0R0 ‘\‘\‘__’\‘

2000

Validators

Figure 4: TPS as a function of validators number in Multiple DCs.

7.8.2. Fuail-Stop Validators

The simplest model of validators failures is fail-stop. We choose it to
demonstrate how improper nodes behavior slows consensus down. The total
number of validators was 16 and from 0 to 5 were stopped (up to 1/3). TPS
as a function of working validators fraction is in Figures 5 and 6.

Exonum shows more than 4000 tps in a Single DC and more than 1800
tps in Multiple DCs for the cryptocurrency. This amount decreases with
the working validators fraction decrease up to 20% maximum value. The
results for the timestamping are better: more than 10 000 tps in a Single
DC and more than 2700 tps in Multiple DCs. The number of fail-stop
validators slightly increases variance for Multiple DCs.

8. Conclusion

We proposed and implemented Exonum — the new Byzantine fault toler-
ant consensus algorithm for blockchains. It is able to process 4 000 trans-
actions per second with 0.5 seconds block acceptance time over the globally
distributed network. Exonum’s performance is stable in case of fail-stop val-
idators, but can significantly decrease with the total number of validators
growth.

BITFURY

Exonum 25

tps
20 000
17 500
15 000
12 500
10 000

7 500

5000 ./*_,/k/o\.\.

2500

Validators

11/16 12/16 13/16 14/16 15/16 16/16

Figure 5: TPS as a function of working validators fraction in a Single DC. The blue
line with squares and magenta filling represents the mean and standard deviation for the
timestamping, the black line with circles and green filling represents the same for the
cryptocurrency.

tps

5000
4 500
4000
3500

2000 ././.\././.
2500

2000 0/'—°\0’/’//4

1500

Validators

11/16 12/16 13/16 14/16 15/16 16/16

Figure 6: TPS as a function of working validators fraction in Multiple DCs.

BITFURY

Exonum 26

9. Acknowledgments

Authors would like to express their most profound appreciation to Ex-

onum team.

1]

2]

References

Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers
(1996)

Dollimore, J., Kindberg, T., Coulouris, G.: Distributed Systems: Con-
cepts and Design (2005)

Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of
partial synchrony. Journal of the ACM 35(2) (4 1988) 288-323

Lamport, L., Shostak, R., Pease, M.: The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems 4(3) (7
1982) 382-401

Driscoll, K., Hall, B., Sivencrona, H., Zumsteg, P.: Byzantine Fault
Tolerance, from Theory to Reality. In: International Conference on
Computer Safety, Reliability, and Security. Springer, Berlin, Heidelberg
(2003) 235248

Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed
consensus with one faulty process. Journal of the ACM 32(2) (4 1985)
374-382

Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems 20(4) (11 2002) 398
461

Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ
replication: A hybrid quorum protocol for Byzantine fault tolerance.
Proceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association (2006) 177-190

Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva.
ACM SIGOPS Operating Systems Review 41(6) (2007) 45

BITFURY

Exonum 27

[10]

[11]

[12]

[13]

[14]

Aublin, P.L., Guerraoui, R., Knezevi¢, N., Quéma, V., Vukoli¢, M.: The
Next 700 BFT Protocols. ACM Transactions on Computer Systems
32(4) (2015) 1-45

Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System.
www.bitcoin.org (2008) 1-9

Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail.
In: Advances in Cryptology CRYPTO 92. Springer Berlin Heidelberg,
Berlin, Heidelberg (1992) 139-147

Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately Hard,
Memory-bound Functions. ACM Transactions on Internet Technology
5 (5 2005)

Malone, D.; O’Dwyer, K.: Bitcoin Mining and its Energy Footprint.
In: 25th IET Irish Signals & Systems Conference 2014 and 2014 China-
Ireland International Conference on Information and Communities Tech-
nologies (ISSC 2014 /CIICT 2014), Institution of Engineering and Tech-
nology (2014) 280-285

Tschorsch, F., Scheuermann, B.: Bitcoin and Beyond: A Technical Sur-
vey on Decentralized Digital Currencies. IEEE Communications Surveys
& Tutorials 18(3) (2016) 2084-2123

Brewer, E.A.: Towards robust distributed systems (abstract). In: Pro-
ceedings of the nineteenth annual ACM symposium on Principles of
distributed computing - PODC ’00, New York, USA, ACM Press (2000)
7

Bitfury Group, Garzik, J.: Public versus Private Blockchains Part 2:
Permissionless Blockchains. bitfury.com (2015) 1-20

Bitfury Group: On Blockchain Auditability. bitfury.com (2016) 1-40

King, S., Nadal, S.: PPCoin : Peer-to-Peer Crypto-Currency with
Proof-of-Stake. Self-published paper (2012) 1-6

Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol. In: Lecture Notes in

BITFURY

Exonum 28

[21]

[22]

23]

[24]

[27]

28]

Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics). Volume 10401 LNCS.,
Springer, Cham (8 2017) 357-388

Bentov, 1., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of Activity. ACM
SIGMETRICS Performance Evaluation Review 42(3) (2014) 34-37

Clark, J., Essex, A.: CommitCoin: Carbon Dating Commitments with
Bitcoin. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics). Volume 7397 LNCS. Springer (2012) 390-398

Lauter, K.: Cryptographic Cloud Storage. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 6054 LNCS (2010) 136-149

Zheng, Q., Xu, S.: Secure and efficient proof of storage with dedupli-
cation. In: Proceedings of the second ACM conference on Data and
Application Security and Privacy - CODASKY 12, New York, New
York, USA, ACM Press (2012) 1

Swan, M.: Summary for Policymakers. In Intergovernmental Panel
on Climate Change, ed.: Climate Change 2013 - The Physical Science
Basis. Cambridge University Press, Cambridge (2015) 1-30

Pilkington, M.: Blockchain Technology: Principles and Applications.
In: Research Handbook on Digital Transformations. Springer (2016)
225 — 253

Kim, H.M., Laskowski, M.: Towards an Ontology-Driven Blockchain
Design for Supply Chain Provenance. SSRN Electronic Journal 25(1)
(8 2016) 18-27

Kuo, T.T., Kim, H.E., Ohno-Machado, L.: Blockchain distributed
ledger technologies for biomedical and health care applications. Jour-
nal of the American Medical Informatics Association 24(6) (11 2017)
1211-1220

Angraal, S., Krumholz, H.M., Schulz, W.L.: Blockchain Technology.
Circulation: Cardiovascular Quality and Outcomes 10(9) (9 2017) 5665—
5690

BITFURY

Exonum 29

[30]

Mamoshina, P.; Ojomoko, L., Yanovich, Y., Ostrovski, A., Botezatu, A.,
Prikhodko, P., Izumchenko, E., Aliper, A., Romantsov, K., Zhebrak, A.,
Ogu, 1.O., Zhavoronkov, A.: Converging blockchain and next-generation

artificial intelligence technologies to decentralize and accelerate biomed-
ical research and healthcare. Oncotarget 9(5) (1 2018) 5665-5690

Buterin, V.: On Public and Private Blockchains - Ethereum Blog (2015)

Vukoli¢, M.: The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication. In: Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Volume 9591. (2016) 112-125

Kiayias, A., Panagiotakos, G.: Speed-Security Tradeoffs in Blockchain
Protocols. Cryptology ePrint Archive (2015) 1-19

Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol:
Analysis and Applications. In Oswald, E., Fischlin, M., eds.: Advances
in Cryptology - EUROCRYPT 2015. Volume 9057 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)
281-310

Kwon, J.: TenderMint : Consensus without Mining (2014)

Cachin, C.: Architecture of the Hyperledger Blockchain Fabric. IBM
Research July (2016)

Zhao, W.: Byzantine fault tolerance for nondeterministic applications.
In: Proceedings - DASC 2007: Third IEEE International Symposium on
Dependable, Autonomic and Secure Computing, IEEE (9 2007) 108-115

Défago, X., Schiper, A., Urban, P.: Total order broadcast and multicast
algorithms. ACM Computing Surveys 36(4) (12 2004) 372-421

Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The Honey Badger of
BFT Protocols. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security - CCS’16, New York, New

York, USA, ACM Press (2016) 31-42

Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: Efficient Asyn-
chronous Atomic Broadcast. IBM Research (2016) 1-4

BITFURY

Exonum 30

[41] Crespo, S.D.P.A., Luis Garcia Cuende, I.: Stampery Blockchain Times-
tamping Architecture (BTA). arXiv (2016) 1-21

BITFURY

Exonum 31

Appendix A. Requests in Consensus Algorithm

Requests are used to obtain unknown information from nodes that signal
the presence of such information via consensus messages (for example, via
a message indicating a blockchain height greater than the local blockchain
height). The algorithm for generating and handling requests is an integral
part of the Exonum consensus algorithm.

Appendiz A.1. Learning from Consensus Messages

Receiving a consensus message from a node gives the message recipient
an opportunity to learn certain information about the state of the message
author (a node that has signed the message; the message author may dif-
fer from the peer that the message recipient got the message from), if the
author is not Byzantine. The receiving node saves this information in the
RequestState structure.

Appendiz A.2. Sending Requests

This algorithm determines the behavior of the node at different stages
of the consensus algorithm if the node needs to request information from
other nodes. The following subsections describe events that cause a specific
response.

For each sent request, the node stores a RequestState structure, which
includes the number of request attempts made and a list of nodes that should
have the required information. RequestState for each request is placed into
a hash map where the key is an identifier of the requested data (hash for
Propose and Transactions, round and hash for Prevotes, height for Block).
When the requested info is obtained, the node deletes RequestState for the
corresponding request (cancels request).

The node sets a timeout for each sent request. The timeout is imple-
mented as a message to this node itself. This message is queued and processed
when it reaches its queue. Timeout deletion (cancelling timeout) means its
deletion from the message queue.

Cancelling the request means cancelling a corresponding timeout as well.

Appendiz A.2.1. Receiving Transaction

If this is the last transaction required to collect a known Propose, cancel
the corresponding RequestTransactions.

Consensus Message from a bigger height

BITFURY

Exonum 32

e Update info about the height of the blockchain on the corresponding
node

e Send RequestBlock for the current height (height of the latest com-
mitted block +1) to the message author, if such a request has not been
sent yet

Appendiz A.2.2. Receiving Propose
e If this Propose has been requested, cancel the request. A list of nodes
that should have all transactions mentioned in the Propose message is
copied from the RequestState before its deletion, to request missing
transactions, if necessary

e If certain transactions from the Propose are not known, send
RequestTransactions to the author of the Propose. Set the nodes in
RequestState for this request as calculated at the previous step.

Appendiz A.2.3. Receiving Prevote
e [f the node does not have the corresponding the Propose, send
RequestPropose to the author of Prevote

e [f the sender specifies lock round, which is greater than the stored
Proof-of-Lock (PoL)], send RequestPrevotes for the locked proposal
to the author of the Prevote

e If the node has formed 2/3+ Prevote messages for the same proposal,
cancel the RequestPrevotes request for the Prevote messages cor-
responding to this proposal (if they have been requested already re-
quested earlier).

Appendiz A.2.4. Receiving Precommit
e Ifthe node does not have a corresponding Propose, send RequestPropose
to the author of the Precommit

e [f the message corresponds to a larger round than the saved PoL, send
RequestPrevotes for this round to the author of the Precommit

e If the node has formed 2/3+ Precommit messages for the same pro-
posal, cancel the corresponding RequestPrecommits (if they have been
requested already).

BITFURY

Exonum 33

Appendiz A.2.5. Recetving Block
e Request the following block in the blockchain from the node (if one
exists) that sent any message from the height greater than the
current height + 1. If there are several such nodes, request is sent to
the one from which the message from the height greater than
current height 4 1 has been received earlier

e Update current height after committing the block locally

e Cancel RequestBlock for the height at which the block has just been
committed.

Appendiz A.2.6. Peers Timeout
e Send a RequestPeers request to a random peer (auditor or validator)
from the list of known peers specified in the local configuration.

e Move to a new height
e Cancel all requests.

Appendiz A.2.7. Request Timeout
e Delete the node, to which the request has been sent, from the list of
nodes that should have the requested data (that list is a part of the
RequestState structure)

e [f the list of nodes having the data to be requested is empty, cancel the
request

e Otherwise, make one more request attempt to another node from the
list of nodes that should have the requested data and start a new timer.

Appendiz A.3. Requests Processing

This algorithm determines the processing of different types of request
messages by the node.

Appendiz A.3.1. RequestPropose
e [f the message corresponds to a height that isn’t equal to the current
height of the node, ignore the message

e [f the node has a Propose with the corresponding hash at the given
height, send it

BITFURY

Exonum 34

Appendix A.3.2. RequestTransactions

Send all the requested transactions the node has as separate messages.
Transactions can either be already committed or be in the pool of uncon-
firmed transactions.

Appendiz A.3.3. RequestPrevotes
e If the message does not match the height at which the node is, ignore
the message

e Send as individual messages all the corresponding Prevotes except
those that the requestor has.

Appendiz A.3.4. RequestBlock
e [f the message corresponds to a height not less than that of the node,
ignore the message

e Form a Block message from the blockchain data and send it to the
requestor.

Appendix A.3.5. RequestPeers
Send all the saved Connect messages from peers to the requestor.
Appendix B. Algorithm Operation Example

Suppose that the system has only four validator nodes (see Figure 1).
Also, the fourth node is hacked and behaves arbitrarily (it is Byzantine).
Sending of messages and changing state in the Figure are designated by
circles with the inscriptions corresponding to action type

e PP: Propose message

e PV: Prevote message

PC: Precommit message

RQ: Request message

e C: moving to the Commit state.

BITFURY

Exonum 35

ROUND 1

1
1
1
! :
noge: S o | 3 : $
1 : ¥ . o : i 5 Q o e o o
I [] 1 o o o
| a
1
NODE | : | 2 : :
2 i L ° i ® ° ° °
{ o : o o o
' :
1
s : 3 : : :
1
3 ! L [[e ° [°
I ° [¢) o o o
| a
1
NODE ! bd !
1 o 1
1 ® 1
! !

Figure B.7: Consensus algorithm operation example

Note that 2/3+ nodes in such a system equals 3 or more nodes, and 1/3—
is one node or less.

Let all nodes simultaneously move to the next height H and start their
work with round 1, and their stopwatches are synchronous. Let node 1
be selected as a leader node according to the leader-election algorithm (see
Subsection 4.3) in this round. This node forms a Propose and sends it to all
the other nodes. Having received this message, the nodes (including node 1)
check it and, if it is compiled in the proper way, send out their own Prevote
messages to everyone. Byzantine node 4 can send the Prevote message to
one node, while do not send anything to the others or send messages with
the wrong format. Suppose, after sending Prevote messages, it turned out
that nodes 1 and 3 received 4 Prevote messages, and node 2 received only
two (for example, node 4 did not send Prevote to node 2, and the message
from node 1 was damaged).

Nodes that received 2/3+ Prevote messages (i.e., nodes 1 and 3 in this
case) claim this by sending all Precommit messages. If a node collects 2/3+
messages Precommit, it adds the corresponding block to itself in the block
system.

Note that due to delays in the delivery and processing of messages, the
sending of any messages of the algorithm can be asynchronous from the

BITFURY

Exonum 36

point of view of different nodes. So, according to the picture, node 1 sent its
Precommit message later than node 2.

Suppose node 2 has not yet received any of the Precommit messages.
From this node, the block, referring to the proposal from the first round, has
not yet received enough Prevote votes to be accepted into the blockchain.
From nodes 1 and 3, the same block has not received enough Precommits
votes.

Within a short time after the start of the first round, the second round
begins in the system (this time is called the round timeout). Let node 3 be
the leader in the second round. It forms a proposal and sends it out. Note
that the proposal sent by the leader node may not be completely new in
relation to proposals that have already been at this height. So, in round 2,
node 3 can, as a proposal, send the proposal from round 1.

Byzantine node 4 can try to independently send out its offer. Due to the
fact that the general algorithm for choosing leaders is used, its proposal will
be rejected by the whole network.

Suppose that the correct Propose in the second round has been received
only by node 2 and, as a consequence, nodes 2 and 3 sent Prevote mes-
sages. Let these Prevote messages reach node 1. In this case, node 1, which
has not received a Propose in this round, will understand that it does not
have enough information to process Prevote messages. According to the
algorithm, it will request additional information (in this case it’s a Propose
message) from the node that owns it (for example, node 2). As a result,
node 1 will be able to independently check the Propose message and send
its Prevote.

Finally, nodes 1, 2, and 3 will receive three Prevote messages. This
will result in the sending of Precommit messages. Having received them,
the nodes will decide to add a block corresponding to the proposal from the
second round, to the block, which will transfer the non-Byzantine nodes to
the height of H + 1.

In this example, for simplicity, Proof-of-Look (PoL) was not mentioned.
The PoL is required to prove the lack of forks and to reduce the number of
proposals considered within the network.

	Introduction
	Assumptions
	Algorithm Overview
	Consensus Messages and Their Fields
	Parameters
	Proof-of-Lock
	Message Processing

	Algorithm Description
	Consensus Algorithm Stages
	Receiving an Incoming Message
	Consensus Messages Processing
	Propose Message Processing
	Transaction Processing
	Full Proposal
	Availability of 2/3+ Prevotes
	Prevote Message Processing
	Precommit Message Processing
	Lock
	Commit
	Block Message Processing
	Round Timeout Processing
	Status Timeout Processing

	Leader Election

	Algorithm Properties
	Exonum Distinguishing Features
	Unbounded Rounds
	Work Split
	Requests Algorithm

	Experiments
	Environment Design
	Blockchain Design
	Performance Tests
	Different Validators Number
	Fail-Stop Validators

	Conclusion
	Acknowledgments
	Requests in Consensus Algorithm
	Learning from Consensus Messages
	Sending Requests
	Receiving Transaction
	Receiving Propose
	Receiving Prevote
	Receiving Precommit
	Receiving Block
	Peers Timeout
	Request Timeout

	Requests Processing
	RequestPropose
	RequestTransactions
	RequestPrevotes
	RequestBlock
	RequestPeers

	Algorithm Operation Example

